Hemeroteca del mes marzo, 2012

On Logical Analysis of Relativity Theories

Por • 27 mar, 2012 • Category: Filosofía

The aim of this paper is to give an introduction to our axiomatic logical analysis of relativity theories.



Thoughts about a conceptual framework for relativistic gravity

Por • 27 mar, 2012 • Category: Crítica

I consider the isolation of general relativity research from the rest of theoretical physics during the 1930s-1950s, and the subsequent reinvigoration of the field. I suggest that the main reason for the isolation was that relativists of the time did not develop heuristic concepts about the physics of the theory with which they could communicate with other physicists, and that the revival happened when they began to develop such concepts. A powerful heuristic today is the concept of a black hole, which is a robust and stable component of many astronomical systems. During the 1930s relativists could only offer the “Schwarzschild singularity”. I argue that the change occurred at least partly because key theoretical physicists schooled in quantum theory entered relativity research and began to approach problematic issues by asking questions about observable effects and the outcomes of thought experiments. The result was the development of a physical intuition about such things as black holes, which could then be communicated to non-specialists. Only then was it possible to integrate general relativity fully into the rest of physics.



Counting systems and the First Hilbert problem

Por • 27 mar, 2012 • Category: Educacion

The First Hilbert problem is studied in this paper by applying two instruments: a new methodology distinguishing between mathematical objects and mathematical languages used to describe these objects; and a new numeral system allowing one to express different infinite numbers and to use these numbers for measuring infinite sets. Several counting systems are taken into consideration. It is emphasized in the paper that different mathematical languages can describe mathematical objects (in particular, sets and the number of their elements) with different accuracies. The traditional and the new approaches are compared and discussed.



Los escenarios 2012

Por • 25 mar, 2012 • Category: Nacionales

A requerimientos de la agencia china de noticias Sinjuá, que quería un panorama electoral de Venezuela, y ya había entrevistado al ejecutivo de una importante encuestadora, accedí a ofrecerle mis opiniones, que, actualizadas, quiero que ustedes conozcan



El show debe continuar

Por • 25 mar, 2012 • Category: Nacionales

En los grupos comprometidos la conexión tiende a ser con la oferta revolucionaria



Venezuela se perfila como uno de los países con mayores reservas de gas

Por • 25 mar, 2012 • Category: Nacionales

En 2011, las reservas probadas de gas natural de Venezuela se ubicaron en 196 billones de pies cúbicos.



En trece años la salida de divisas ha sido de $131 mil 538 millones

Por • 25 mar, 2012 • Category: Nacionales

Este monto supera la hemorragia que hubo en la segunda mitad del Siglo XX



A la escuela con Álvaro

Por • 25 mar, 2012 • Category: Nacionales

El Estado Mundial de la Infancia 2012, de Unicef, revela que Venezuela es uno de los países con mayor desigualdad educativa, junto con Pakistán, Tayikistán y Benín. Los varones más pobres de las ciudades venezolanas son los que menos estudian. Álvaro intenta no entrar en la estadística



Asdrúbal Baptista: Es imposible entender a Venezuela sin comprender el mercado mundial

Por • 25 mar, 2012 • Category: Nacionales

El académico afirma que el petróleo rompió el equilibrio primordial entre Estado y sociedad civil creando una relación de unilateral dependencia. Advierte sobre las dificultades del Gobierno para implantar un modelo socialista apoyado en un ingreso capitalista, como lo es la renta petrolera



On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function

Por • 24 mar, 2012 • Category: Educacion

The Riemann Hypothesis has been of central interest to mathematicians for a long time and many unsuccessful attempts have been made to either prove or disprove it. Since the Riemann zeta function is defined as a sum of the infinite number of items, in this paper, we look at the Riemann Hypothesis using a new applied approach to infinity allowing one to easily execute numerical computations with various infinite and infinitesimal numbers in accordance with the principle `The part is less than the whole’ observed in the physical world around us. The new approach allows one to work with functions and derivatives that can assume not only finite but also infinite and infinitesimal values and this possibility is used to study properties of the Riemann zeta function and the Dirichlet eta function. A new computational approach allowing one to evaluate these functions at certain points is proposed. Numerical examples are given. It is emphasized that different mathematical languages can be used to describe mathematical objects with different accuracies. The traditional and the new approaches are compared with respect to their application to the Riemann zeta function and the Dirichlet eta function. The accuracy of the obtained results is discussed in detail.