El Teorema de indecidibilidad de Church (1936): Formulación y presentación de las ideas principales de su prueba

Por • 10 oct, 2017 • Sección: Opinion

Franklin Galindo, Ricardo José Da Silva

Resumen. El Teorema de indecidibilidad de Church es uno de los resultados meta-teóricos de mediados de la tercera década del siglo pasado, que junto a otros teoremas limitativos como los de Gödel y Tarski, han generado todo un sinfín de reflexiones y análisis tanto en el marco de las ciencias formales, esto es, la matemática, la lógica y la computación teórica, como fuera de ellas, en especial la filosofía de la matemática, la filosofía de la lógica y la filosofía de la mente. Nos proponemos, como propósito general del presente artículo, formular el Teorema de indecidibilidad de Church y presentar las ideas principales de su demostración. Para llevar a cabo el primer objetivo necesitamos introducir y explicar las nociones de función recursiva y la numeración de Gödel, que permitirán enunciar de manera formal y rigurosa el Teorema de Church. Luego que enunciemos el Teorema de indecibilidad de Church de manera formal y rigurosa, pasaremos a presentar las ideas principales de la prueba del Teorema de indecidibilidad de Church para la Lógica de primer orden, en la cual se utiliza el sistema axiomático de Robinson para la aritmética y cuatro hechos sobre él mismo: (a) En el sistema de Robinson para la aritmética las funciones recursivas son representables, (b) El sistema de Robinson es indecidible, (c) El número de axiomas propios del sistema de Robinson es finito y (d) El cálculo lógico del sistema de Robinson es igual (formalmente) al cálculo de la lógica de primer orden.

“El Teorema de Indecibilidad de Church (1936): Formulación y Presentación de las ideas principales de su demostración“. . Apuntes Filosóficos. Vol 26, N 50 (2017).

Texto completo: PDF

http://saber.ucv.ve/ojs/index.php/rev_af/article/view/13552

Post to Twitter

Escribe un comentario