Artículos con la etiqueta ‘D.Hilbert’

New generalizations of BCI, BCK and Hilbert algebras

Por • 11 dic, 2013 • Category: Opinion

We introduce more generalizations of BCI, BCK and of Hilbert algebras, with proper examples, and show the hierarchies existing between all these algebras, old and new ones. Namely, we found thirty one new generalizations of BCI and BCK algebras and twenty generalizations of Hilbert algebras.



Husserl, Cantor & Hilbert: La Grande Crise des Fondements Mathematiques du XIXeme Siecle

Por • 13 nov, 2013 • Category: Educacion

Three thinkers of the 19th century revolutionized the science of logic, mathematics, and philosophy. Edmund Husserl (1859-1938), mathematician and a disciple of Karl Weierstrass, made an immense contribution to the theory of human thought. The paper offers a complex analysis of Husserl’s mathematical writings covering calculus of variations, differential geometry, and theory of numbers which laid the ground for his later phenomenological breakthrough. Georg Cantor (1845-1818), the creator of set theory, was a mathematician who changed the mathematical thinking per se. By analyzing the philosophy of set theory this paper shows how was it possible (by introducing into mathematics what philosophers call ‘the subject’). Set theory happened to be the most radical answer to the crisis of foundations. David Hilbert (1862-1943), facing the same foundational crisis, came up with his axiomatic method, indeed a minimalist program whose roots can be traced back to Descartes and Cauchy. Bringing together these three key authors, the paper is the first attempt to analyze how the united efforts of philosophy and mathematics helped to dissolve the epistemological crisis of the 19th century.



De la matemática clásica a la matemática moderna: Hilbert y el esquematismo kantiano

Por • 8 ago, 2012 • Category: Educacion

En este artículo se examina la manera en que Hilbert elabora su primer formalismo al investigar los fundamentos de la geometría. El interés se centra en la forma en que elabora una nueva concepción de las teorías matemáticas. Se contrasta la postura de Hilbert con el constructivismo de Kant, el cual perduró en la filosofía de las matemáticas durante mucho tiempo. Para ello, en la primera parte se examina la manera en que Kant explica la demostración geométrica y se muestra el vínculo entre su explicación y la teoría de esquemas que él mismo sostiene. También se expone la concepción subyacente a los Grundlagen der Geometrie de Hilbert, y se busca reconstruir el camino que siguió hasta alcanzar esa concepción. En particular se examina el lugar que ocupan la geometría proyectiva y el principio de dualidad en sus reflexiones. Por último, se apunta a la idea de que el primer formalismo de Hilbert constituye una generalización necesaria de la filosofía matemática de Kant.