Artículos con la etiqueta ‘Emerging Technologies (cs.ET)’

Does the D.C. Response of Memristors Allow Robotic Short-Term Memory and a Possible Route to Artificial Time Perception?

Por • 23 feb, 2014 • Category: Opinion

Time perception is essential for task switching, and in the mammalian brain appears alongside other processes. Memristors are electronic components used as synapses and as models for neurons. The d.c. response of memristors can be considered as a type of short-term memory. Interactions of the memristor d.c. response within networks of memristors leads to the emergence of oscillatory dynamics and intermittent spike trains, which are similar to neural dynamics. Based on this data, the structure of a memristor network control for a robot as it undergoes task switching is discussed and it is suggested that these emergent network dynamics could improve the performance of role switching and learning in an artificial intelligence and perhaps create artificial time perception.

When does a physical system compute?

Por • 3 oct, 2013 • Category: Filosofía

Computing is a high-level process of a physical system. Recent interest in non-standard computing systems, including quantum and biological computers, has brought this physical basis of computing to the forefront. There has been, however, no consensus on how to tell if a given physical system is acting as a computer or not; leading to confusion over novel computational devices, and even claims that every physical event is a computation. In this paper we introduce a formal framework that can be used to determine whether or not a physical system is performing a computation. We demonstrate how the abstract computational level interacts with the physical device level, drawing the comparison with the use of mathematical models to represent physical objects in experimental science. This powerful formulation allows a precise description of the similarities between experiments, computation, simulation, and technology. We give conditions that must be satisfied in order for computation to be occurring, and apply these to a range of non-standard computing scenarios. The framework also covers broader computing contexts, where there is no obvious human computer user. We define the critical notion of a ‘computational entity’, and show the role this plays in defining when computing is taking place in physical systems.

Computation of the Travelling Salesman Problem by a Shrinking Blob

Por • 25 mar, 2013 • Category: Opinion

The Travelling Salesman Problem (TSP) is a well known and challenging combinatorial optimisation problem. Its computational intractability has attracted a number of heuristic approaches to generate satisfactory, if not optimal, candidate solutions. In this paper we demonstrate a simple unconventional computation method to approximate the Euclidean TSP using a virtual material approach. The method is notable for its simplicity and the spatially represented mechanical mode of its operation. We discuss similarities between this method and previously suggested models of human performance on the TSP and suggest possibilities for further improvement.