Artículos con la etiqueta ‘Física de la Mesoescala y la Nanoescala’

Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing

Por • 6 mar, 2014 • Category: Leyes

A quantum computer can solve hard problems – such as prime factoring, database searching, and quantum simulation – at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection, by distributing a logical state among many physical qubits via quantum entanglement. Superconductivity is an appealing platform, as it allows for constructing large quantum circuits, and is compatible with microfabrication. For superconducting qubits the surface code is a natural choice for error correction, as it uses only nearest-neighbour coupling and rapidly-cycled entangling gates. The gate fidelity requirements are modest: The per-step fidelity threshold is only about 99%. Here, we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92% and a two-qubit gate fidelity up to 99.4%.