Artículos con la etiqueta ‘Information Theory (cs.IT)’

Introducing the Computable Universe

Por • 12 jun, 2012 • Category: Educacion

Some contemporary views of the universe assume information and computation to be key in understanding and explaining the basic structure underpinning physical reality. We introduce the Computable Universe exploring some of the basic arguments giving foundation to these visions. We will focus on the algorithmic and quantum aspects, and how these may fit and support the computable universe hypothesis.

Foreword: A Computable Universe, Understanding Computation and Exploring Nature As Computation

Por • 30 may, 2012 • Category: Ciencia y tecnología

I am most honoured to have the privilege to present the Foreword to this fascinating and wonderfully varied collection of contributions, concerning the nature of computation and of its deep connection with the operation of those basic laws, known or yet unknown, governing the universe in which we live. Fundamentally deep questions are indeed being grappled with here, and the fact that we find so many different viewpoints is something to be expected, since, in truth, we know little about the foundational nature and origins of these basic laws, despite the immense precision that we so often find revealed in them. Accordingly, it is not surprising that within the viewpoints expressed here is some unabashed speculation, occasionally bordering on just partially justified guesswork, while elsewhere we find a good deal of precise reasoning, some in the form of rigorous mathematical theorems. Both of these are as should be, for without some inspired guesswork we cannot have new ideas as to where look in order to make genuinely new progress, and without precise mathematical reasoning, no less than in precise observation, we cannot know when we are right — or, more usually, when we are wrong

Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales

Por • 15 may, 2012 • Category: Filosofía

Concepts used in the scientific study of complex systems have become so widespread that their use and abuse has led to ambiguity and confusion in their meaning. In this paper we use information theory to provide abstract and concise measures of complexity, emergence, self-organization, and homeostasis. The purpose is to clarify the meaning of these concepts with the aid of the proposed formal measures. In a simplified version of the measures (focussing on the information produced by a system), emergence becomes the opposite of self-organization, while complexity represents their balance. We use computational experiments on random Boolean networks and elementary cellular automata to illustrate our measures at multiple scales.