Artículos con la etiqueta ‘Multiagent Systems (cs.MA)’

Modelling Complexity for Policy: Opportunities and Challenges

Por • 10 oct, 2013 • Category: sociologia

This chapter reviews the purpose and use of models from the field of complex systems and, in particular, the implications of trying to use models to understand or make decisions within complex situations, such as policy makers usually face. A discussion of the different dimensions one can formalise situations, the different purposes for models and the different kinds of relationship they can have with the policy making process, is followed by an examination of the compromises forced by the complexity of the target issues. Several modelling approaches from complexity science are briefly described, with notes as to their abilities and limitations. These approaches include system dynamics, network theory, information theory, cellular automata, and agent-based modelling. Some examples of policy models are presented and discussed in the context of the previous analysis. Finally we conclude by outlining some of the major pitfalls facing those wishing to use such models for policy evaluation.

A Game-Theoretic Model Motivated by the DARPA Network Challenge

Por • 12 may, 2012 • Category: sociologia

In this paper we propose a game-theoretic model to analyze events similar to the 2009 \emph{DARPA Network Challenge}, which was organized by the Defense Advanced Research Projects Agency (DARPA) for exploring the roles that the Internet and social networks play in incentivizing wide-area collaborations. The challenge was to form a group that would be the first to find the locations of ten moored weather balloons across the United States. We consider a model in which $N$ people are located in the space with a fixed coverage volume around each person’s geographical location, and these people can join together to form groups. A balloon is placed in the space and a group wins if it is the first one to report the location of the balloon. A larger team has a higher probability of finding the balloon, but the prize money is divided equally among the team members and hence there is a competing tension to keep teams as small as possible. We analyze this model under a natural set of utilities, and under the assumption that the players are \emph{risk averse}.