Artículos con la etiqueta ‘Neurons and Cognition (q-bio.NC)’

Networks in Cognitive Science

Por • 27 abr, 2013 • Category: Educacion

Networks of interconnected nodes have long played a key role in cognitive science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions or collaborations among scientists. Today, the inclusion of network theory into cognitive sciences, and the expansion of complex systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood.



LT^2C^2: A language of thought with Turing-computable Kolmogorov complexity

Por • 9 mar, 2013 • Category: Opinion

Our setting leads to a Kolmogorov complexity function relative to LT^2C^2 which is computable in polynomial time, and it also induces a prediction algorithm in the spirit of Solomonoff’s inductive inference theory. We then prove the efficacy of this language by investigating regularities in strings produced by participants attempting to generate random strings. Participants had a profound understanding of randomness and hence avoided typical misconceptions such as exaggerating the number of alternations. We reasoned that remaining regularities would express the algorithmic nature of human thoughts, revealed in the form of specific patterns. Kolmogorov complexity relative to LT^2C^2 passed three expected tests examined here: 1) human sequences were less complex than control PRNG sequences, 2) human sequences were not stationary, showing decreasing values of complexity resulting from fatigue, 3) each individual showed traces of algorithmic stability since fitting of partial sequences was more effective to predict subsequent sequences than average fits. This work extends on previous efforts to combine notions of Kolmogorov complexity theory and algorithmic information theory to psychology