The modal logic of forcing arises when one considers a model of set theory in the context of all its forcing extensions, interpreting necessity as «in all forcing extensions» and possibility as «in some forcing extension». In this modal language one may easily express sweeping general forcing principles, such as the assertion that every possibly necessary statement is necessarily possible, which is valid for forcing, or the assertion that every possibly necessary statement is true, which is the maximality principle, a forcing axiom independent of but equiconsistent with ZFC (Stavi-V\»a\»an\»anen, Hamkins). Every definable forcing class similarly gives rise to the corresponding forcing modalities, for which one considers extensions only by forcing notions in that class. In previous work, we proved that if ZFC is consistent, then the ZFC-provably valid principles of the class of all forcing are precisely the assertions of the modal theory S4.2.