Artículos con la etiqueta ‘Teoría de la relatividad’

From aether theory to Special Relativity

Por • 3 mar, 2013 • Category: Leyes

This way of thinking the spacetime emanates from our daily experience and lies at the heart of Newton’s Classical Mechanics. Nevertheless, in 1905 Einstein defied Galileo addition of velocities by postulating that light travels at the same speed c in any inertial frame. In doing so, Einstein extended the principle of relativity to the electromagnetic phenomena described by Maxwell’s laws. In Einstein’s Special Relativity the ether does not exist and the absolute motion is devoid of meaning. The invariance of the speed of light forced the replacement of Galileo transformations with Lorentz transformations. Thus, relativistic length contractions and time dilations entered our understanding of the spacetime. Newtonian mechanics had to be reformulated, which led to the discovery of the mass-energy equivalence.

The ontology of General Relativity

Por • 2 feb, 2013 • Category: Filosofía

I discuss the ontological assumptions and implications of General Relativity. I maintain that General Relativity is a theory about gravitational fields, not about space-time. The latter is a more basic ontological category, that emerges from physical relations among all existents. I also argue that there are no physical singularities in space-time. Singular space-time models do not belong to the ontology of the world: they are not things but concepts, i.e. defective solutions of Einstein’s field equations. I briefly discuss the actual implication of the so-called singularity theorems in General Relativity and some problems related to ontological assumptions of Quantum Gravity.

Historical Approach to Physics according to Kant, Einstein, and Hegel

Por • 28 ene, 2013 • Category: Crítica

It is known that Einstein’s conceptual base for his theory of relativity was the philosophy formulated by Immanuel Kant. Things appear differently to observers in different frames. However, Kant’s Ding-an-Sich leads to the existence of the absolute reference frame which is not acceptable in Einstein’s theory. It is possible to avoid this conflict using the ancient Chinese philosophy of Taoism where two different views can co-exist in harmony. This is not enough to explain Einstein’s discovery of the mass-energy relation. The energy-momentum relations for slow and ultra-fast particles take different forms. Einstein was able to synthesize these two formulas to create his energy-mass relation. Indeed, this is what Hegelianism is about in physics. Isaac Newton synthesized open orbits for comets and closed orbits for planets to create his second law of motion. Maxwell combined electricity and magnetism to create his four equations to the present-day wireless world. In order to synthesize wave and particle views of matter, Heisenberg formulated his uncertainty principle. Relativity and quantum mechanics are the two greatest theories formulated in the 20th Century. Efforts to synthesize these two theories are discussed in detail.

Relativity Is Not About Spacetime

Por • 18 oct, 2012 • Category: Leyes

Quantum measurement predictions are consistent with relativity for macroscopic observations, but there is no consensus on how to explain this consistency in fundamental terms. The prevailing assumption is that the relativistic structure of spacetime should provide the framework for any microphysical account. This bias is due, in large part, to our intuitions about local causality, the idea that all physical processes propagate through space in a continuous manner. I argue that relativity is not a guarantor of local causality, and is not about ontological features of spacetime. It is, rather, an expression of the observational equivalence of spacetime descriptions of physical processes. This observational equivalence is due to the essentially probabilistic nature of quantum theory.

On Logical Analysis of Relativity Theories

Por • 27 mar, 2012 • Category: Filosofía

The aim of this paper is to give an introduction to our axiomatic logical analysis of relativity theories.

Comments on «Disproof of Bell’s theorem»

Por • 11 jul, 2011 • Category: Filosofía

In a series of very interesting papers [1-7], Joy Christian constructed a counterexample to Bell’s theorem. This counterexample does not have the same assumptions as the original Bell’s theorem, and therefore it does not represent a genuine disproof in a strict mathematical sense. However, assuming the physical relevance of the new assumptions, the counterexample is shown to be a contextual hidden variable theory.

On Logical Analysis of Relativity

Por • 7 may, 2011 • Category: Filosofía

The aim of this paper is to give an introduction to our axiomatic logical analysis of relativity theories.